Tumor and Stem Cell Biology A Synthetic Matrix with Independently Tunable Biochemistry and Mechanical Properties to Study Epithelial Morphogenesis and EMT in a Lung Adenocarcinoma Model

نویسندگان

  • Bartley J. Gill
  • Don L. Gibbons
  • Laila C. Roudsari
  • Jennifer E. Saik
  • Zain H. Rizvi
  • Jonathon D. Roybal
  • Jonathan M. Kurie
  • Jennifer L. West
چکیده

Better understanding of the biophysical and biochemical cues of the tumor extracellular matrix environment that influence metastasis may have important implications for new cancer therapeutics. Initial exploration into this question has used naturally derived protein matrices that suffer from variability, poor control over matrix biochemistry, and inability to modify the matrix biochemistry and mechanics. Here, we report the use of a synthetic polymer-based scaffold composed primarily of poly(ethylene glycol), or PEG, modified with bioactive peptides to studymurinemodels of lung adenocarcinoma. In this study, we focus onmatrix-derived influences on epithelial morphogenesis of a metastatic cell line (344SQ) that harbors mutations in Kras and p53 (trp53) and is prone to a microRNA-200 (miR-200)–dependent epithelial–mesenchymal transition (EMT) and metastasis. The modified PEG hydrogels feature biospecific cell adhesion and cell-mediated proteolytic degradation with independently adjustable matrix stiffness. 344SQ encapsulated in bioactive peptide-modified, matrix metalloproteinase–degradable PEG hydrogels formed lumenized epithelial spheres comparable to that seen with threedimensional culture in Matrigel. Altering both matrix stiffness and the concentration of cell-adhesive ligand significantly influenced epithelial morphogenesis as manifest by differences in the extent of lumenization, in patterns of intrasphere apoptosis and proliferation, and in expression of epithelial polaritymarkers. Regardless of matrix composition, exposure to TGF-b induced a loss of epithelial morphologic features, shift in expression of EMT marker genes, and decrease in mir-200 levels consistent with EMT. Our findings help illuminate matrixderived cues that influence epithelial morphogenesis and highlight the potential utility that this synthetic matrixmimetic tool has for cancer biology. Cancer Res; 72(22); 1–11. 2012 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model.

Better understanding of the biophysical and biochemical cues of the tumor extracellular matrix environment that influence metastasis may have important implications for new cancer therapeutics. Initial exploration into this question has used naturally derived protein matrices that suffer from variability, poor control over matrix biochemistry, and inability to modify the matrix biochemistry and...

متن کامل

Mesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line

Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...

متن کامل

Epithelial-Mesenchymal Transition and Inflammation in Head and Neck Squamous Cell Carcinoma

Head and neck squamous cell carcinoma (HNSCC) represents a large majority of cancers arising from the head and neck, especially the oral cavity. Despite advances in therapy, the five-year survival rate remains low due to the number of patients presenting advanced stages of the disease. The role of epithelial-mesenchymal transition (EMT) in tumorigenesis in HNSCC remains unexplored. The current ...

متن کامل

Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo

Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...

متن کامل

Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices

Epithelial cells disengage from their clusters and become motile by undergoing epithelial-to-mesenchymal transition (EMT), an essential process for both embryonic development and tumor metastasis. Growing evidence suggests that high extracellular matrix (ECM) stiffness induces EMT. In reality, epithelial clusters reside in a heterogeneous microenvironment whose mechanical properties vary not on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012